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Ter Haar has shown that simple kinetic theor\ arguments bawd 011 Drude's earl) uork 
P f  can be used to derix-e approximate expressions for the transport properties of seniiconductors 

and metals. Using ter Haar's ideas, this paper derives an espresaion for the ambipolar diffusion 
contribution to the electron thermal conductirity. I n  the first part of the derivation a general 
expression is obtained for the heat conductivity, using the concepts of the kinetic theor)- of 
gases and assuming an electron mean free path. The expressicn obtained is in all respects similar 
to the diffusion equation from the kinetic theory of gases, except for a term taking the effect 
of an electric field into consideration. In the second part of the derivation the concepts of band 
theory and semicoiiductor statistics are introduced in the kinetic theory equations. The finales- 
pression for the ambipolar contribution, using Boltznianii Statistics agrees, escept for numeri- 
cal constants, with the exact form derived from con~iderations based upon the Boltzniann 
transport eqiiation. The appliration of Fernii-Dirac statistics to the problem yields no ambi- 
polar diffusion term as a correction to the conducti\-ity, i f  terms higher than the first order of 
the reciprocal of the reduced Fermi level are neglected. This is i l l  agreement with the exact re- 
sults based upon the Boltzmaiin transport equation from \\-hich it is seen that  the atn1)ipolar 
term contains only serond and higher order term, of the reciprocal of the rediired F e r m i - l e v e l . & y  

I. INTKGDUCTiOE e. The mathematical a p p a r a t u z d u i r e d  to 
Ad 

THE rapid development of seniiconductiiig 
materials in  recent 1 ears and their applica- 

tion to energy conversion devices has stimulated 
much interest in the transport processes in 
solids. Solid-state energy conversion devices are, 
like all heat energies, limited in their efficiency 
by the Carnot efficiency, and in addition by the 
transport properties of the solid. The heat 
conductivity plays a vital part in  this process 
since it limits the amount of heat available for 
conversion to electrical energy by determining 
the amount of heat originally absorbed from a 
heat source and the amount ultimately rejected 
to a heat sink, and thereby lost. Xnalysis of the 
heat condugl;ion process by formal transport 
theory (assu'niption of relaxation time), in the 
region of mixed conduction, shows tha t  the heat 
conductivity is not simply the sum of the electron 
and hole conductivities. L h i  additional term 
appears, which is proportional to the carrier 
mobilities and a quadratic term involving the 
ratio of the band-gap energy AE to the average 
kinetic energy, and inversely proportional to 
the sum of the hole and electron mobility. This 
term represents a contribution to the heat 
conductivity which is especially marked when 
the band-gap AE is much larger than the 
average energy of the carriers. 

L/ 

arrive a t  the expression for the heat contfuctivit>- 
and the ambipolar diffusion term is considerable 
ant1 it is instructive to see j u s t  how far one can 
go using a very simple model for the transport 
processes in a solid. Tcr Haar' has shown that 
using simple kinetic theory argumcnts, first-order 
approximations can be obtained for the electrical 
conductivity, heat conductivity, thermelcctric 
power, etc., of metals and se~niconductors. I n  
fact the basic equations arc identical to the 
equations of thermal conductivity, viscosity, and 
diffusion derived froin the kinetic theory of 
gases. A41tliough the model is very crude indeed, 
it yields first-order tcrms even for the compli- 
cated transport phenomena which occur in the 
presence of temperature and density gradients. 
Ter Haar makes a number of simplifying assump- 
tions i n  his calculations which upon more careful 
examination can be shown to restrict the full 
power of his approach unnecessarily. For 
example, ter Haar' calculates the absolute 
thermoelectric power of a semiconductor and 
gets the dominant term proportional to the 
average kinetic energy of the carriers-more 
careful analysis turns u p  the missing term 
proportional to the Fermi ent'rgy transported 
- -___ 

D, ter Haar, Physica 22,  61 (19561, 
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by the carriers.* \\*e therefore thought it worth- 
while to take another look at  the problem of the 
ambipolar contribution to heat conduction in 
intrinsic semiconductors. 'Ter Haar's calculation 
of the ambipolar effect yields the relatively 
large term proportional to ( k / e ) * (  1 AEl /kT)*. 
But careful recalculation of the problem gives an 
expression which contains i n  addition to the term 
given by ter Haar, contributions proportional to 
(kle)*( I A E  I /kT) and to the constant ( k / e ) 2 .  
(This constant is in  effect equal to twice the 
Loreiitz number?) This accounts for all the 
terms found b l  the usual solution of the transport 
equations except for numerical constants. The 
same analysis is extended to a degenerate gas. 
'The case of aiiibipolar tliffusioii in  a semimetal 
is considered, and the results of calculations 
are givcii. 

'Hie analysis presented by ter Haar and 

vl(x--Xl) =~~l--Xl(dvl/dx).5 I f  the particles are 
subject to an electric field E,, the velocity of the 
particles increases by p lE r  over the mean free 
path X 1 ,  and the average velocity of the particles 
crossing the plane in  the positive x direction is' 

v1+ =a1(x--X1) +p1 E,=vl-Xl(av, iax) +p1 E,, (1) 
P 

where p1 = elXl/mlvl is the mobility of the carrier 
of charge el. The average concentration corre- 
sponding to the last collision before the particle 
passes through the plane, i n  analogy to our 
preceding argumcwts, is 

n-1= n1 (x -A1) = n1 - A 1  (dn , /dx) .  (2 )  

'The negative particle current density i i i  the 
positive x direction can now be written, with 
the help of Kqs. 1 and 2 :  

.iZ+- = elnl-vI+. ( 3 )  
elaborated here is, of course, aii extension of the 
ver? old h i t  rioiieth~~less still iiiterestiiig Ilrutle 
thcwr) of iiietals.' 'I 'h(~ aiialysis is iicithei- 
iiitciidetl iior preteiitls to replace results tlerivcd 
from a solution of the Uoltzmaiiii trailsport 

, I'he coiiiplc~tc expressioii for the curreiit deiisity 
coiitributctl h> both positive and negative 
carriers (i.c,., holes and electroiis) Honing i n  both 
the positive and iirgativc, x directions is 

equation, but attempts to show that a VCI-1 
siiiiplcx physical i i i o t l c d  does reinarkabl> wc.11 i i i  

reprotluciiiy S O I I I C  result of solicl-state thc.oi-) . 
We proceed with the calculation of the 

electric and thermal current densities assumiiig 
the semiconductor or semimetal to be a gas of 
electrons and holes of deiisity n l  aid n2,  respec- 
tively. In  the calculations all pretense of beiiig 
able to calculate numerical factors is dropped 
and we henceforth neglect them, 

11. ELECTRIC AND HEAT CURRENT DENSITY 

1. General Formulation 

('onsider particles passing through an imagiii- 
ary plaiie at x in  the positive x direction. T h e  
plane is perpendicular to the axis. I f  v1 is the 
average velocity of the particles a t  the plane, the 
velocity sl (x-x,) of the particles having suffered 
a collision at distance A 1  from the plane will be 
that appropriate to the last collision, i.e., 

a E'. E. Geiger, SAS.4 1's D-1176, h4a)r 1962 (1111- 
published). 

In our approximation, where no attempt is made to 
calculate numerical constants, twice the Lorentz number 
comes out to be just (k/e).l 

P. Drude, Ann. Physik (4), 1, 566 (1900); and (4), 3, 
369 (1900). 

.i = e 1 Cn 1-vl + - n 1 +v 1-1 + e2[n .'-a? + - n2, v2-], (4) 

w h c w  t tic sut)script 2 refers to the positive 
carriers or holes. This equation can be reduced 
with the help of the explicit expressioiis for nl-, 
i t l + ,  etc., and we get 

with e l  = -e? = e. 'This equation is interesting in 
a number of ways. Except for the mobility terms, 
it is identical with the expression for the rate of 
mutual diffusion of two ideal gases.6 Note that 
the equation contains both the Einstein-diffusion 
and the thcrnial-diffusion coefficients. 'This 
becomes clear if we write 

eAv(dn/dx) = (eX/mv)mv*(dn/dx).  ( 6 )  

The symbols and conventions are those used by 
ter Haar. 
BR. Fuerth, Proc. Roy. SOC. A 179, 461 (1942). 
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For a classical gas this becomes PkT(an,’an-) 
= eD(an/a.r), where D is the Einstein-diffusion 
coefficient.’ Similarly transforming enX (av, ax) 
we get 
A 

( 7 )  

where D‘ is the thermal diffusion coefficient.’ 
Equation 5 niay be transformed with the use of 
Eqs. 6 and 7 :  

I t  should be cmphasized again that Eq. 8 is an 
approximate equation for the current. If w e  
designate the kinetic energies of the particles by 
e l =  (mlv12 ’2) and e 2 =  (m2v22 2 ) ,  Eq. 8 becomes 

or, introducing the temperature gradient a T/ax, 

0. >.ladelung, “Halbleiter” in Handbuch der Physik, 
edited b y  S .  Fliigge (Springer-I’erlag, Berlin, 1957), 17d. 
20. p. 86. 

The preceding discussion of the equation for thc 
current density allows us  now to write down the 
formal equation for the total hcat-currcnt 
density, W,, 

Urr= [nl-El-vl+-nl+El+vl-] 
+ [nt_E~_v-+-nn.L+L=?+zr:!_], (1 1 )  

where E,*=E,fX,(aE,  lax), E, being the fotal 
average energy of the particle, i.e., the sum of 
the kinetic and “potential” energy, and ntk, 
and z‘,* are as before. If we now substitute the 
expressions for n r ,  a,, and E,, in Eq. 11 ,  we get, 

an, aE1 + [ n 1E 1kl - X 1% I( z)( --)I 6, 

+identical terms except with subscript 

“2”,  replacing the subscript “1”.  (12 )  

Vsing Eqs. 6 and 7,  arid neglecting terms such 
as (an1a.t) (aE1a.r) and ternis of higher orders 
in al”a.u, we write, 

- n 1p 1E I( %)I( E) + Cn IP IE I 1 E, 

The charge flow caused b>- the temperature and 
density gradients sets up an electric field E,, 
which reduces the current flow to zero, when 
equilibrium is reached. ‘The magnitude of this 
field niay be obtained from Eq. 10 by setting the 
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current density j ,  equal to zcro and solving for 
the field E,, 

holes, or t l  = €2, which for classical statistics'O 
ecluals ( k y ' ) ,  and we get from Eq. 16, 

II-4;;) 

where u, thc electrical conductivitj., is givcn 

u = o1 + uJ = e (n  I - n 2 p 2 ) .  (15) 

The heat conductivity is defincd for the equi- 
1 briuni condition j , = O ,  and Eq. 14 gives the 
appropriate electr'c field G,. Substituting IGl.  
14 into Eq. 13, we find for the heat current 
density JV,, 

+[identical expression for holes, except 

all subscripts interch.inged]. (16) 

The final rcduction of Eq. 16 is quite tedious, 
and henceforth oiily the most important steps i n  
the derivation of the heat coiiductivity is givcm. 
We consider iiow the cases of classical and 
Fermi-llirac statistics. 

2. The Classical Case 

If we first consider the case of an intrinsic 
semiconductor of bandgap 1 A E !  , the total 
energy of the electrons isg E1 = e l ,  aud that of 
the holes E 2 =  ~ A E  + e 2 .  \Ye make usc of the 
equipartition thcorcm : that is, the average 
kinetic energy of the electrons equals that of t h e  

+[identical expression for holes, except 

all subscripts interchanged] 

b 

'I'he wc~ll-laiowii c,uprcsion for the carrier con- 
cwitratioii i n  thc conduction and valence band 
of an intrinsic iiontlcgencrate sc,miconductor," 

allows u s  rcatlily to calculate the gradients 
(anl l ay ' ) ,  and (an2/a7') (agaiii oniitting iiun1er- 
ical factors), 

n = n = 2 ( 2 a m k  7 ' ih?)  :e ( '  A / 2 h  T) , ~2 I = = m , 

lAEi (%) = n 1 ( + + T j ) 9  

(2) =+.+ -). 14 
and  

Using Eq. 17 ,  we may now write the expression 
for the heat current density (this timc omitting 
all nunierical factors) : 

s'This notation differs from the accepted one i n  the  
definition of rnobilitics, but is used here to facilitate study 
and compari5on with ter Haar's paper. 

In the calculation it nia1;es no ditference whether we 
add the "ioiiization energy'' I A E  1 to c, or e2. 

lo 'Ihe factor (t) has been omitted in the expression for 
the alerage kinetic energy since no attempt is made to 
ralculate nunierical constants. 

l 1  I<. A. Smith, Semiconductors (Cambridge I'niversity 
Press, Cambridge, England, 1959), p. 78. 
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where u1 and u2 are the electron and hole conduc- 
tivities, respectively, as defined above. Equation 
18 gives all the essential ternis in the cxprtssioti 
for the heat current density of an intrinsic 
;ondegenerate semiconductor which are obtained 
hy the solution of the Boltzmaiin transport 
w a t i o n .  See, for example, the exact expression 
obtained by I\ladelung,12 also compare with 
exact results obtained by PriceI3 by considering 
diffusion down a temperature gradient in a 
semiconductor. 

3. Degenerate Case 

Let us  now consider a semiconductor wi th  
energy gap AE but th is  time make the assump- 
tion that both electrons and holes are highly 
~Iegenerate.’~ For this case then the electrons 

longer so simple for degenerate carriers, expres- 
sions for E ,  n,  and ian,’aT) cannot be obtained 
in a closed form. ’The expressions for the average 
energy, carrier density, etc., must now be 
obtaincd in power series expansions of the 
reduced Fermi energy. In  order to reduce the 
problem to manageable proportions and to 
obtain a tractable expression for the Fermi 
energy, we assume equal hole aiid electron 
masses. This results in  a number of simplifica- 
tions: Ej=E,‘= l A E ! / 2 ,  (dnl/aT)= (dnz/aT) ,  
and inore importantly, the average kinetic 
energy of the holes may be set equal to that of 
the electrons, even though the carriers are 
degenerate. \Yith these siiiiplif>-ing assumptions 
aiid the condition of overlapping bands, we can 
write Eq. 16 in the form, 

follow Fermi-Dirac statistics with the tlistribu- 
tion function 

where E is the electron energy and Ej the Fermi 

1 -fo(E,Ej) =fo+(E’,E,‘), where we have used 
the energy coordinate transformation E = -.AE 
-E’, E ,  = - AE - E{‘ such that 

energy. The hole distribution function is then X [ (2) + 2 en-’( $)I}, (1 9) 

where as above we let E1=t ,  and Ea=AE+e; 
bu t  now with the difference, AE = - I AE I .  

\Ye now proceed with the calculations of the fQ+ = [ (c.p(E’- El’) /kT‘j + l]-1.’5,’6 

Positive hole energies are measured down from 
the top of the conduction band (E’=O), and 
E,‘ is the Fermi energy of the holes. I t  is now 
easily seen that the condition for the degeneracy 
of the electrons, i.e., (E j lkT)>>l ,  and that of 
the holes, (E, ’ /k  T)>>l cannot simultaneously be 
met if the relation E,= -AE-Ej’ is to be 
satisfied.li I t  can only be satisfied if AE is 
negative, i.e., - AE 1 .  Physically this simply 
means that the conduction and valence bands 
overlap by thc amount I A E ’  . 111 the classical 
case it was easy enough to find expressions for 
the average energy of the carriers, and their 
equilibrium concentrations. l lat ters are no 

11See Kef. 7, p. 88. 
l3 P. J.  Price, Phil. 11ag. 46, 1252 (1953). 
14 ‘The assumption of hieh deeeneracv simplifiw cal- 

cula tions. 
l5 St: Ref. 1 1 ,  p. 168. 
-4. H. \\ ilson, The Tlzcory of dfe tak ,  (Canbridge 

Vniversity Press, Cambridge, England, 1953). 2nd ed. 
p. 211, Eq. 8.511.1, and, p. 233. 

1’1Ve are indebted to J. ,Ifarburger for raising and 
ciarif>ing this point. 

average energies, concentration of carriers n ,  
etc., in degenerate statistics. The axrerage energy 
of an electron or hole may be obtained in a 
power series expansion in powers of (k7-,{Ef) 
from the esprcssioii of the intcrnal cncrgy of 
elec t roil s 

U 
-= E = k l ’ [F;  (I.:, ’ k  T ) ,  ’F+ (Ef,:kl‘)] (see Ref. 18), 
n 

where the function Fk(E,,/kT) is defined by the 
integral 

Fk ( 7 )  = lx [exp (.x - 7) + 11-1xkdx. 

‘These functions and their power-series cxpansions 
are discussed by IlcDoEgall and Stoiirr,!g and 
\\‘ilson.zo Expressions for n and (, n,/aT) are 

‘ 8 % ~  Kef .  16. D. 117. Eo. 62.3 1 
I9 J .  iIcDougali and k7e. Stolier, Phil. ‘Tram. Roy. SOC. 

London A237, 67 (19381, Eq. 5.1. 
mSee Ref. 16, p. 332, E<. A41.6, 
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obtaiiied from their dependence on '1' i n  intrinsic 
semiconductors and semimetals : 

contribution for a scniinictal (negative ency-gy 
gap) to be extreinely small and to bc of ordcr 
T - ~  and higher. 

n=4a(2mk?' /h2)31; : (~ : / /k1 ' )  (see Kef. 21) .  
111. CONCLUSIONS I, 

If we make a power-series expansion of the 
functions F k ( q )  for the condition E://kT=q>>l The interpretation of the results for tbe 
for E,  ( 8 ~ / 8 T ) ,  n-l(an/dT), etc., we obtain the classical case present no diff icul t ie~.~~ 'I?% 
following expressions, 

I f  we substitute Eq. 20 i n  Eq. 19, omit all 
coninion numerical constants in  the expansions 
of Eq. 20, and drop all terms of order higher than 
1-1, \ve get, 

+u lgs  (6k 'T-  3 I A E  I kq-I)] .  (2 1 ) 

Rlaking the substitution 1 AE 1 = 2E,= 2qkZ' i n  
Eq. 21 we find that the ambipolar term reduces 
to zero, leaving us with the individual contribu- 
tion of the electrons and holes to the heat 
conductivity, 

wZa(aT/ax)--1= - 2 2 ~ - * ~ ~ ( ~ ~ + ~ ~ ) z .  (22) 

'I'his result, obtained on the basis of a very 
simple model, agrecs within the assumptions 
made, with the exact calculations of \ladelung,2Y 
and 1)annha~iser.~~ They show the amhipolar 

temperature gradient i n  the semiconductor and 
its concommitant density gradient produce a 
flow of carriers. If there is to be no net current 
flow, ( j , = 0 ) ,  an electric field must be set up 
to oppose the flow of carriers. This field changes 
the iiidividual flows of the holes and electrons if 
their mobilities arc not equal such that tlie net 
currcnt becomes zero (we assume here equal 
number of electrons and holes). Ikspite zero 
net-current flow the net-energy flow does not 

120) reduce to zero, because the average energy of the 

31 See lief. 11, p. 79. 
See Ref. 7, p. 88. 

23 1;. I>;innhRuser. Z. I'hvsik 166, 510 (1962), Eq. 14. 

carriers drifting along the temperature-deiisity 
gradient is greatcTr than that of the carricrs 
drifting back untlcr the influencc of the retarding 
held &z. I f  we assiinic for simplicit) 's sake that 
both carricrs have the saii ick niobility, (nl  again 
tleiiig equal to n.J ,  the individual currents 
exactly coinpensatc csach other, and thc. boundary 
condition of no net current is met without a 
compensating ficld E,. In other words the carriers 
drift under the sole influcncc of the combined 
temperature clciisit), gra(licnts. Eq. 14 shows 
quite clcarl> t h a t  6.1-ctlucc~s to L ~ T O  i f  fzlpl =nsp2.?6  
\\.e can niakc an estimate of the ciiergy trans- 
ported undcr these contlitioiis by making use of 
the average drift velocity of the carriers, which 
are easily obtained from Flq. 6 aiid 7. 'I'he drift 
vcslocity, / i t ,  due to thc temperature gradient is 
equal to Di(d7'/a.x), and the drift velocity, u, ,  
due to  tlie density gradient is D(an/ax). The 
energy to create an electron hole pair, the 

is EI+Ez= 1 AE 1 + t l f c ? .  

Therefore, the rate a t  which energy drifts down 
the tcniperature-dciisity gradient with a pair is 
( E 1 + E 4 ) ( ~ ~ t + ~ ~ n ) .  I t  is now easily verified with 
Eqs. 6 arid 7, and the expressionz6 for (dlz/aT),  
that  the above expression for the rate of energy 
transport is indeed the ambipolar contribution to 
the thermal cond~ict ivi ty .~~ 'Thus the origin of the 

6 ' '  ionization 

21 See Ref. 23, p. 52'1. 
25 l o t e  that accmrcliiig to our dcfinitio~l ( p l / [ p i  1 )  

= -(Pz/lP*?l).  
26 See Sec. 2. 
27 Compare with Refs. 13 and 28, p. 9. 
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various terms in the expression for the ambipolar 
term in Eq. 18 are easily accounted for. A4t first 
thought. one would expect this contribution to be 
linear in AE,  but the term proportional to 
can now be traced directly to that part of the 
energy transport caused by the densit>- gradient. 

- The general arguments given in the preceding 
4 
paragraph concerning the drift of electron-hole 
pairs under the influence of temperature and 
density gradients is unaffected by the degree of 
degeneracy of the carriers. Equation 16, which 
describes the energy transport b j  electrons and 

degenerate carriers. However, in  order to see 
t why the ambipolar contribution to the heat 
t conductivity for the latter is iionc&tent (to a 

I results of solid-state theor>-. These results are 
I actually implicit in the assumptions made i n  

I I I  the top oi rhe 
valence and the bottom of the conduction band. 

1 filled with electrons up to the Fermi level a t  
I T=O”I<. But the unoccupied states in the 

t 

I 
I 
I 

holes, is equalll- applicable to both classical and 

. 
t first approximation), we have to draw on some 

Sec. 3 .  \Ye assumed overlapping bands, and the 

Consequentl\- all energ>- levels i n  both bands are 

1 

I 

behave like holes.’” &At elevated temperatures 
electrons in the conduction band and holes in  
the valence band arc excited into higher states. 
/Ye can now easily \-isualize a “free” electron 
and a “free” hole which exist literally side by 
side, i.e., occupy the same energy level, but in 
different bands. \Yhereas in the classical case 
electrons and holes were of necessity separated by 
at least the “ionization energy,” AE, we find 
that the above mentioned pair transports no 
ionization energy. \Ye can further imagine all 
free electrons and holes in their respective bands 
paired off in  the fashion described. T h u s  011 the 
average there is no ambipolar contribution to 
the heat conductivity. \\-e also note that i f  we 
take the average total energy of an electron 
hole pair. E1+E.~=AE+cl+c?, let t l = ~ ? =  J E  

2 ,  and put AE= - AI5 , E,+E2 reduces to 
zero. ‘This physical picture of the ambipolar 
effect i n  semimetals does seem to be a fairly 
accurate one, since the exact results2s show the 
effect to be smaller b> a factor ofT-?= (1 100) 
than the straightforward electron and hole 
conduction. 

band betweell the top of the band and J. hi. Ziman, “Electrons in  LIetaIs” il l  Short Guide 
t o  fhe Fermi SurJuce (Taylor and Francis Ltd., London, 
1962). ,,. 37. the Fermi level (i.e., i n  the corners of the first 

Rrillouiii zone of a simple cubic lattice, say) 39 See Kef. 23. 


